

The Golden Digits International Contest 8th Edition, January 2025

Problem 1. Alex and Bob play a game: Bob picks an initial positive integer x_0 . Then, after every minute, Alex chooses a positive integer a, and Bob chooses x_{i+1} to be equal to $x_i + a$ or $x_i + 2a$. Prove that no matter the choice of x_0 and Bob's strategy, Alex can force him to choose a number that is a perfect square after a finite number of minutes.

Problem 2. Let n, m be two integers such that $2 \mid mn$. On an $n \times m$ board we place $\frac{mn}{2}$ dominoes without overlap. On some domino e lies a burrito. Alex sits on the top-left corner of a domino s and is very hungry. He is allowed to make two types of moves:

- a) from a vertex of a domino he can move diagonally to the opposite one
- b) if he sits on the corner of some domino d he can move to the top-left corner of d

Alex can eat the burrito if he reaches a corner of e. Can Alex satisfy his belly regardless of the choice of m, n, s, and e?

Problem 3. Let \mathcal{P} and \mathcal{Q} be convex polygons with areas $S_{\mathcal{P}}$ and $S_{\mathcal{Q}}$, respectively, such that every vertex of \mathcal{Q} lies inside or on the boundary of \mathcal{P} . Prove that there exists a polygon \mathcal{R} , similar to \mathcal{P} and with sides parallel to the sides of \mathcal{P} , with area $S_{\mathcal{R}}$, such that every vertex of \mathcal{R} lies inside or on the boundary of \mathcal{Q} , and

$$S_{\mathcal{R}} \ge \frac{1}{1000} \cdot \frac{S_{\mathcal{Q}}^2}{S_{\mathcal{P}}}.$$