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Problem 1. On a table, there are 2025 empty boxes numbered 1, 2, . . . , 2025 and 2025 balls
with weights 1, 2, . . . , 2025. Starting with Vadim, Vadim and Marian take turns selecting a
ball from the table and placing it into an empty box. After all 2025 turns, there is exactly
one ball in each box. Denote the weight of the ball in box i by wi. Marian wins if

2025∑
i=1

i · wi ≡ 0 (mod 23)

If both players play optimally, can Marian guarantee a win?

Ciurea Pavel

Solution: We show Marian cannot win.

We associate each move a player makes a pair (i, j), 0 ≤ i, j ≤ 22, such that if the player
places a ball of weight w in box b, then w ≡ j (mod 23) and b ≡ i (mod 23).

Vadim starts by making a move (1, 1). After that, if Marian makes a move (i, j) Vadim
makes a move (i,−j). We show that Vadim can always do so:

For 0 ≤ i ≤ 22, let Bi,M and Wi,M be the number of boxes with number b ≡ i (mod 23),
and the number of balls of weight w ≡ i (mod 23) after move M , respectively.

Obviously, Bi,1 = Wi,1 = 88. So, after Vadim moves, say at move i, Bi,M ≡ 0 (mod 2) and
Wi,j = Wi,23−j. Now it is easy to see that Vadim can always stick to his strategy.

Then, after 2025 moves
∑2025

i=1 i · wi ≡ 1 (mod 23). Thus, Marian cannot win.
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Problem 2. Let n ∈ N, n ≥ 2. Find all functions f : R>0 → R>0 such that

f 2(x1 + · · ·+ xn) =
n∑

i=1

f 2(xi) + 2
∑
i<j

f(xixj)

for all x1, . . . , xn ∈ R>0.

Vila Andrei

Solution 1: Let P (x1, x2, . . . , xn) denote the assertion f 2(x1 + · · · + xn) =
∑n

i=1 f
2(xi) +

2
∑

i<j f(xixj)

f 2(x1 + · · ·+ xn) =
∑n

i=1 f
2(xi) + 2

∑
i<j f(xixj) > f 2(x1) so f is increasing.

Claim 1: ∀m ∈ R>0 there is some x such that f(x) < m

Proof: Suppose for the sake of contradiction that f(x) ≥ m, ∀x ∈ R>0.

We take x2 = x3 = . . . xn = y
n−1

. We get f 2(x+ y) ≥ f 2(x) +m.

Let k be a natural number. Then summing the inequality f 2
(
x+ y

k

)
> f 2

(
x+ y−1

k

)
+ m

for y = 1, k we get that f 2(x+ 1) > m · k, which is obviously false for k big enough.

Claim 2: f(x) + f(y) = f(a) + f(b), ∀x, y, a, b ∈ R>0 such that x+ y = a+ b.

Proof: Case 1: n = 2

P (x + y, z) and P (x, y) give f(x)2 + f(y)2 + 2f(xy) + f(z)2 + 2f(xz + yz) = f 2(x + y)2 +
f(z)2 + 2f(xz + yz) = f 2(x+ y + z)

Considering the same equation, but swapping y and z, after cancelling common terms we
get

f(xy) + f(xz + yz) = f(xz) + f(xy + zy)

so this case is proven.

Case 2: n ≥ 3

Looking at P (x+ x1, x2, y, y, . . . , y) and P (x1, x+ x2, y, y, . . . , y) we get

E(x1)− E(x2) + 2(n− 1)(f((x+ x1)y)− f(yx1)− f((x+ x2)y) + f(yx2)) = 0

where E(x1) = f 2(x+ x1)− f 2(x1) and similarly for x2.

Thus, there exists c ∈ R such that f((x+ x1)y)− f(yx1)− f((x+ x2)y) + f(yx2) = c, ∀y.
From claim 1 and because f is increasing, ∀ε > 0 there is some t such that ∀x < t, f(x) < ε.
Thus, for every small enough y we get that |f((x+x1)y)−f(yx1)−f((x+x2)y)+f(yx2)| < 2ε,
so c = 0, thus

f((x+ x1)y) + f(yx2) = f(yx1) + f((x+ x2)y)

so the claim is proven.
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Claim: f(x) + f(y) = f(x+ y)

Proof: We first show that ∀x,m > 0 there exists ε > 0 such that f(x)− f(x− ε) < m

By claim 2 f(x) − f(x − ε) = f(2ε) − f(ε). By claim 1 we can simply choose ε such that
f(2ε) < m.

Fix x, y,m > 0. Pick ε such that f(x + y) − f(x + y − ε) < m and f(ε) < m. By claim 2
f(x)+f(y) = f(ε)+f(x+y−ε) ⇒ |f(x+y)−f(x)−f(y)| < 2m, ∀m > 0 ⇒ f(x)+f(y) =
f(x+ y).

It is well-known that if f : R>0 → R>0 is additive then there exists c such that f(x) = cx.
But now it is easy to see that c = 1, so f(x) = x, ∀x > 0.

Solution 2: Quite clearly, the function is increasing. Let limx→0+ f(x) = l ≥ 0. By taking
xi → 0+ for all i, we get l2 = nl2 + n(n − 1)l, implying l = 0. Fixing x1 = x0 and letting
xi → 0+ for all i > 1 gives

lim
x→x+

0

f(x) = f(x0),

while fixing x1 + x2 + · · ·+ xn = x0 and letting x1 → x−
0 gives

lim
x→x−

0

f(x) = f(x0),

therefore, f is continuous.

Now letting xi → 0+ for all i > 2 we arrive at the functional equation for n = 2, namely

f 2(x+ y) = f 2(x) + f 2(y) + 2f(xy).

Substituting y → y + z and applying the equation again gives

f 2(x+ y + z) = f 2(x) + f 2(y) + f 2(z) + 2(f(xy + xz) + f(yz)).

Exploiting symmetry we arrive at

f(xy + xz) + f(yz) = f(yx+ yz) + f(xz),

implying that f satisfies the Jensen functional equation, from which we conclude that f(x) =
x.
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Problem 3. Let ABC be a scalene acute triangle with incenter I and circumcircle Ω. M
is the midpoint of small arc BC on Ω and N is the projection of I onto the line passing
through the midpoints of AB and AC. A circle ω with center Q is internally tangent to Ω
at A, and touches segment BC. If the circle with diameter IM meets Ω again at J , prove
that JI bisects ∠QJN.

Anghel David-Andrei

Solution: Through the solution we will repeatedly use the following known fact: if a line
through M meets BC and Ω at G and G′, then MG ·MG′ = MI2.

Let D be the projection of I onto BC and denote the circle with center N and passing
through D by τ . Let MJ and BC intersect again at U .

Main claim: U is the exsimilicenter of τ and ω.

Proof: Let D be the projection of I onto BC, and let MD meet Ω again at S. By our
observation, MD ·MS = MJ ·MU = MI2, so points S,D, J, U lie on a circle. But points
I, U,D, J also lie on the circle with diameter IU , thus these 5 points lie on the circle with
diameter UI. Now, let AI and BC meet at T .

A

B C

M

I

U

S

D

J

D′

M ′

T

SinceMI2 = MS ·MD = MA·MT , the first implies△MID ∼ △MSI, so ∠ISM = ∠DIM ,
and the second implies ASDT is cyclic, so ∠DSA = ∠DTM . Combining these, we get
∠ASI = ∠IDT = 90◦, implying that A, S, U are collinear, as IS ⊥ SU.

Now let D′ be the reflection of D over N , so that τ is the circle with diameter DD′, and D′

will be the projection of A on ID, so A, S,D′, I lie on the circle with diameter AI, implying
that ∠DSD′ = ∠DSA− ∠D′SA = ∠DTM − ∠D′IA = 90◦, so S lies on τ.

Furthermore, if we let SD′ meet Ω again at M ′, observe that SM ′ ⊥ SM , so Ω is the circle
with diameter MM ′, but then by homothety at S, τ and Ω are tangent at S. As D lies on
segment BC, it will also lie on segment SM , so τ lies inside Ω.
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But by the previous argument, S is the exsimilicenter of τ and Ω, and we know that A is the
exsimilicenter of ω and Ω, thus, by Monge’s theorem, AS passes through the exsimilicenter
of τ and ω. But U lies on both this line and line BC, which is externally tangent to both Ω
and ω, so the claim is proven.

A

B
C

I

T
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Y

S

Let V be the insimilicenter of τ and ω. It’s known and easy to prove by homothety at A
that T lies on ω, so I lies inside both τ and ω, A lies outside τ but on ω and D lies inside
on τ but outside ω, so these two circles have 2 common points X and Y.

Observe that MA · MT = MS · MD, so M lies on the radical axis of τ and ω. Also,
MX ·MY = MD ·MS = MU ·MJ, so X, Y, J, U lie on a circle. But observe that XU and
XV are the 2 bisectors of ∠NXQ, from U and V being exsimilicenter and insimilicenter, so
X lies on the circle with diameter UV , and similarly so does Y.

Thus, J also lies on this circle, so V J ⊥ JU, but also IJ ⊥ JU , thus I lies on JV. But now,
(N,Q;V, U) make a harmonic bundle and JV ⊥ JU , so JV is the bisector of ∠NJQ, and
we are done.
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