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Problem 1. Determine all functions f : R+ → R+ which satisfy

f
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f(x)

)
+ x = f(xy) + f(f(x)),

for any positive real numbers x and y.

Pavel Ciurea

Solution. Rewrite the condition in the statement using the map y 7→ y/x. It then becomes
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)
− f(y) = f(f(x))− x. (†)

Let λx = 1/(xf(x)). It follows inductively that for any positive integer N we have
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Taking N to be large enough, it follows that f(f(x)) = x so, in particular, f is injective. Recall
the equation (†). These properties yield xf(x) = 1 for every positive real number x.

To conclude, the only function which satisfies the condition is f(x) = 1/x, which works trivially.



Problem 2. Let ABCD be a parallelogram and P a point in the plane. The line BP intersects
the circumcircle of ABC again at X and the line DP intersects the circumcircle of DAC again at
Y . Let M be the midpoint of AC. The point N lies on the circumcircle of PXY so that MN is
a tangent to this circle. Prove that MN and AM have the same length.

David-Andrei Anghel

Solution 1. Let ω be the circumcircle of PXY and ωB, ωD the circumcircles of ABC and ADC
respectively, with centers OB, OD and equal radius R. Also, consider the linear function f(Q) =
AQ2 − Powω(Q). We wish to show that f(M) = 0, i.e. f(B) + f(D) = 0.
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Observe that

f(B) = AB2 −BX ·BP

= AB2 − (BP − PX) ·BP

= AB2 −BP 2 + PX · PB

= AB2 −BP 2 + PO2
B −R2,

where the last equality is obtained from the power of P with respect to ωB. Therefore, we have
f(B) + f(D) = AB2 + AD2 −BP 2 −DP 2 + PO2

B + PO2
D − 2R2. Using the median formula

4PM2 = 2(BP 2 +DP 2)−BD2 = 2(PO2
B + PO2

D)−OBO
2
D,

which yields

f(B) + f(D) = AB2 + AD2 +
OBO

2
D −BD2

2
− 2R2.

Finally, we have OBO
2
D = 4OBM

2 = 4R2 − AC2, and 2(AB2 + AD2) = AC2 + BD2, by the
parallelogram formula. Combining these two, we get

f(B) + f(D) = AB2 + AD2 +
4R2 − AC2 −BD2

2
− 2R2 = 0,

exactly what we wanted to prove.



Solution 2. Consider HX , the X-Humpty point in the triangle XAC. It is well-known that HX

lies on the median XM , as well as on the circle ωD (since ωB and ωD are symmetric with respect
to AC).
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A quick angle chase gives

]HXY D = ]HXAD = ]HXAC + ]CAD

= ]HXXA+ ]ACB

= ]HXXA+ ]AXB

= ]HXXB,

or equivalently, ]HXY P = ]HXXP , implying that HX ∈ ω. But then,

MN2 = Powω(M) = MHX ·MX = MA2,

where the last equality is yet another well-known property. This concludes the solution.



Problem 3. There are m identical rectangular chocolate bars and n people. Each chocolate bar
may be cut into two (possibly unequal) pieces at most once. For which m and n is it possible to
split the chocolate evenly among all the people?

D. Bugaenko and N. Konstantinov
Solution. It is possible if and only if m > n or m/n = 1− 1/k for some integer k > 2.

We begin by showing that these values do work. Let ` be the length of the chocolate bars. If
m > n then place the chocolate bars in a line, forming a rectangle of length m`. Now, simply
perform vertical cuts which split this large rectangle into n equal sections.

Because m > n the distance between any two cuts is m`/n > ` hence each chocolate bar is cut at
most once. Now, assume that m/n = 1 − 1/k for some integer k > 2. Observe that in this case,
k − 1 divides m. Split the chocolate bars into groups of size k − 1.

Like before, combine the chocolate bars in each group to form a rectangle of length `(k − 1) and
perform vertical cuts which split each such rectangle into k equal sections. Thus, we divide the
chocolate evenly into km/(k − 1) = n portions.

Note that we cut each chocolate bar at most once. Every chocolate piece created in this manner
has length t · `/k for some integer t > 1. Thus, if a chocolate bar would be cut at least twice, two
of these cuts would be at a distance of at most (k − 2)`/k < (k − 1)`/k, absurd.

Assume that the condition holds for some m and n with m < n. We may also assume, for the
sake of simplicity, that each chocolate bar has area one. Then, each person should receive a total
area of chocolate equal to m/n < 1 so each chocolate bar must be cut.

Suppose that after the cuts, the resulting chocolate pieces have areas a1 6 a2 6 · · · 6 a2m. Of
course, for each i, the pieces of areas ai and a2m+1−i make up a chocolate bar. We claim that ai/a1
is always an integer. We proceed inductively; of course, this holds for i = 1.

Before continuing, observe that a2m = m/n. If a2m > m/n then this piece is too large by itself. If
a2m < m/n, then any other piece of chocolate contributes with an area of at least a1, which is too
much, as a2m + a1 = 1 > m/n. Either way, the chocolate cannot be split evenly.

Now, assume that for i = 1, . . . , k it is true that ai/a1 is an integer. Note that since ak+1+a2m−k =
1 > m/n then a2m−k adds up to m/n with some ai1 , . . . , ail < ak+1. Hence, the indices i1, . . . , il
are at most k so due to the induction, (ai1 + · · ·+ ail)/a1 is an integer.

Hence, we may write a2m−k + t · a1 = m/n. Observe further that m/n = a2m = 1 − a1 hence we
may conclude that (t+1) ·a1 = 1−a2m−k = ak+1. Therefore, ak+1/a1 is an integer too, as desired.
This completes the induction.

Now, we may write m/n = a2m = (t − 1) · a1 and 1 = a2m + a1 = t · a1 for some integer t > 2 to
infer that m/n = 1 − 1/t, as we wanted to prove. To conclude, the only m and n that work are
the ones described above.


