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Problem 1. Let n > 1 be a composite integer and d1 < · · · < dm be all its positive divisors. Is it
possible for di + di+1 to be a perfect k-th power, k > 2 being fixed, for every 1 6 i < m?

Pavel Ciurea

Solution. The answer is no. Suppose, for the sake of contradiction, that there exist n and k with
the desired properties. Observe that d1 = 1 and d2 = p, the smallest prime factor of n.

Because n is composite, m > 3. Therefore d3 exists and is either equal to p2 or some other prime
number q. The former is impossible, because p+ 1 and p(p+ 1) cannot simultaneously be perfect
k-th powers, so d3 = q, where q is another prime number.

We may now infer that p+ 1 and p+ q are perfect k-th powers. Because dm = n, dm−1 = n/p and
dm−2 = n/q it also follows that n(p+ 1)/p and n(p+ q)/(pq) are perfect k-th powers. This being
said, n/p and n/(pq) must simultaneously be perfect k-th powers, which is absurd.

Remark. If one allows n to be prime as well, it can easily be observed that the only solutions
are the prime numbers of the form n = 2p − 1, where p itself is prime. These numbers are called
Mersenne primes and it is unknown whether infinitely many of them exist.



Problem 2. We are given an infinite set of points in the plane such that any two of them have a
distance of at most one. Prove that all the axes of symmetry of this set are concurrent, provided
that there are at least two of them.

Note: An axis of symmetry of a set of points in the plane is a line ` with the property that the
reflection of any point in the set with respect to ` is also in the set.

David-Andrei Anghel

Solution. Let `1 and `2 be two axes of symmetry. First, we prove that they are not parallel.

Assume the contrary, so `1 and `2 are parallel. Suppose further that they are also parallel to the
x-axis, having y-coordinates a and b. Thus, if a point P0 = (c, d) is in the set, then its reflection
P1 in `1 belongs to the set and the reflection P2 of P1 in `2 also belongs to the set.

Observe that P2 = (c, 2(a− b) + d) and a 6= b. Thus, we can continuously perform this procedure,
so for any positive integer n, the point P2n = (c, 2n(a− b) + d) belongs to the set. This obviously
yields a contradiction, because of the distance condition.

To conclude, `1 and `2 meet at some point P . Consider some other axis of symmetry ` and assume
that it does not pass through P . Let d = dist(P, `) and consider an arbitrary point X from the
set. We may now prove the claim at the core of the solution.

Claim. There exists a point Y in the set, such that PY 2 > PX2 + 4d2.

Proof. Let `′ be the parallel to ` passing through P . A reflection in `1 combined with a reflection
in `2 is a rotation with the pivot in P . By considering the reverse procedure (that is, reflecting in
`2 and then `1), we may assume that the angle of this rotation is at most π.

Evidently, the angle of rotation is non-zero, because `1 6= `2. Therefore, we can repeatedly apply
this rotation on X until we get a point X ′ which satisfies PX = PX ′ and which is not on the
same side of `′ as `. Take Y to be the reflection of X ′ in `.

Note that X ′Y is perpendicular to `. Let Z = X ′Y ∩ `. By Pythagoras’ theorem, we have

PY 2 − PX ′2 = PZ2 + Y Z2 − PZ2 −X ′Z2 = (Y Z −X ′Z)(Y Z +X ′Z).

As Y Z −X ′Z = 2d and X ′Z > 0, we get the desired inequality.

To see why the claim finishes the problem, take an arbitrary point A0 from the set, and use the
claim inductively to prove the existence of a point An from the set, such that PA2

n > PA2
0+4nd2.

Therefore, 1 + PA0 > A0An + PA0 > PAn > 2d
√
n, a contradiction for large enough n.

Remark. If there are at least three axes of symmetry, one may give an alternative solution which
makes use of the following property: given a triangle ∆, for an adequate ordering a, b, c of its sides,
the series of reflections in a, b, c, a, b, c produces a non-trivial translation.

The proof consists of computations with the aid of complex numbers, so we will not present it.



Problem 3. On the surface of a sphere, a non-intersecting closed curve comprised of finitely many
circle arcs is drawn. It divides the surface of the sphere in two regions, which are coloured red
and blue. Prove that there exist two antipodes of different colours (the curve is colourless).

Vlad-Titus Spătaru

Solution 1. Let C be the curve on the sphere’s surface. Of course, note that the red and blue
regions are connected. Suppose, for the sake of contradiction, that there is no pair of antipodes
with the desired property. Let R be the red region.

Consider any red point p1 on the sphere, whose antipode p2 does not lie on C. It follows from our
assumption that p2 is red. Call a path circular if it consists of finitely many circle arcs. Define
analogously a circular curve.

Claim 1. There exists an entirely red circular path Πr from p1 to p2.

Proof. Firstly, consider some arcs p1q1 and p2q2 where q1, q2 lie on C. Consider the circular path
Π ⊂ C which connects q1 and q2. Note that because C is comprised of finitely many circle arcs,
there exists a constant ε > 0 so that dist(a, b) > ε for any points a, b on the C.

Therefore, the path Π0 may be translated by a small enough ε′ such that, letting q1 7→ q̃1, q2 7→ q̃2
and Π 7→ Π̃, the circular path Πr := p1q̃1 ∪ Π̃ ∪ q̃2p2 lies entirely in the red region R.

Claim 2. Let Π′
r be the reflection of Πr about the sphere’s centre. Then, Π′

r does not intersect C.

Proof. Assume that a point q ∈ Π′
r belongs to C and let q′ ∈ Πr be the antipode of q. Consider a

small enough neighbourhood D of q′ which is entirely red. Consider any point q̃ ∈ D.

Let q̃′ be the antipode of q̃ and D′ be the reflection of D about the sphere’s centre. Of course,
D′ is a neighbourhood of q. It follows from our assumption that q̃′ is red, or it belongs to C so,
generalizing, every point in D′ is red or belongs to C.

Since q′ ∈ C, then C pierces the neighbourhood D′ at least once, splitting it into several regions. At
least two of these regions lie on different sides of C, so one of them must be blue, which contradicts
the former observation. Therefore, Π′

r ∩ C is empty.

Claim 3. Provided that Πr is adequately chosen, the path Π′
r does not intersect the path Πr.

Proof. Let α1, . . . , αn be the arcs that make up Πr and for each i = 1, . . . , n let ωi be the circle
containing αi. Note that we may assume that ωi 6= ωj for all i, j, for otherwise we can translate
some arc αi 7→ α̃i by a small enough amount ensuring ωi 7→ ω̃i 6= ωj for any j.

Now, observe that any intersection between Πr and Π′
r is an intersection between some circles ωi, ωj

and of course, there are finitely many such intersection points. Also, observe that if q ∈ Πr ∩ Π′
r

then the antipode q′ of q also belongs to Πr ∩Π′
r. If Πr and Π′

r do not have any intersections, we
are done. Otherwise, let (q1, q

′
1), . . . , (qk, q

′
k) be all the intersection points of Πr and Π′

r.

For each i = 1, . . . , k let Πr,i ⊂ Πr be the path from qi to q′i. Evidently, all these paths have
finite lengths. Thus, we may choose some index m such that Πr,m has minimal length, ties broken
arbitrarily. Assume, for the sake of contradiction, that Πr,m and Π′

r,m intersect each other.

Consider a point q ∈ Πr,m∩Π′
r,m. As noted above, the antipode q′ of q must also be an intersection



point of Πr,m and Π′
r,m, so (q, q′) = (qi, q

′
i) for some index i. Thus, Πr,i ⊂ Πr,m, contradicting the

minimality of the length of Πr,m.

To conclude, the circular paths Πr,m and Π′
r,m do not intersect each other. Therefore, we may

assume that Πr was originally chosen as Πr,m, proving the claim.

By combining the claims with the definition of Π′
r it follows that Πr ∪Π′

r is a red, non-intersecting
closed curve circular Cr symmetrical with respect to the sphere’s centre. Then, Cr divides the
surface of the sphere into two regions R1 and R2 of equal area.

Since the blue region is connected, then there cannot be blue points in both R2 and R2, for
otherwise a blue path must cross the red curve Cr. Hence, some region Ri is entirely red.

The boundary of Ri is the red curve Cr while the boundary of R is the curve C, which does not
intersect Cr. Therefore, the area of R is strictly greater than the area of Ri, which is half of the
sphere’s surface area S.

However, by analogous arguments, we may infer that the area of the blue region B is strictly
greater than half of the sphere’s surface area as well, which leads to a contradiction, since the
areas of R and B add up to S.

Remark 1. One may convert the problem to the two-dimensional plane via an adequately chosen
stereographic projection of the sphere’s surface. We will sketch the solution for this approach.

The curve C is mapped to a circular non-intersecting curve C̃ in the plane and the red and blue
region are mapped to the interior and exterior of C̃, depending on the choice of the poles of the
stereographic projection. Of course, there is no difference.

Letting s be the south pole of the projection, the pre-images of two points p1, p2 in the plane are
antipodes if and only if s lies on the segment p1p2 and dist(s, p1) ·dist(s, p2) = λ for some constant
λ, that is, p1, p2 are switched by an inversion in s composed with a reflection in s.

For the sake of brevity, let γ : R2 \ {s} → R2 \ {s} be the geometric transformation we have just
described, which is an involution. The there claims and their proofs are isomorphic in this case,
except that instead of antipodes we refer to pairs of points p, γ(p).

Assume, for the sake of contradiction, that there is no pair of points p, γ(p) of different colours.
Without loss of generality, assume further that the south pole s is coloured blue. Now, choose a
red point p for which γ(p) is also red, which of course exists.

From the three claims, there exists a red circular path Πr from p to γ(p), for which γ (Πr) is also
red and does not intersect Πr. Then, Πr and γ(Πr) form a red non-intersecting circular curve, with
the point s lying in its interior.

Since the blue region is connected, there is no blue point outside of the curve Cr = Πr ∪ γ (Πr) .
Therefore, considering a blue point s′ which is close enough to s, due to the nature of γ, the point
γ(s′) will lie outside Cr, so it must be red, which finishes the proof.

Remark 2. We are only working with non-intersecting circular curves, so there is no ambiguity
regarding the existence of an interior and exterior of the curve. Should we consider an arbitrary
non-intersecting closed curve C, multiple problems arise.



We will now present a non-elementary solution, for an arbitrary non-intersecting closed curve C.

Solution 2. Using Jordan’s theorem, the red and blue regions exist. Just like before, assume for
the sake of contradiction that there is no pair of antipodes with the desired property. The core of
the solution is the alternative definition of compactness in Rn.

Theorem (Heine-Borel). A set K ⊆ Rn is compact if and only if it is closed and bounded.

Let R be the set of red points, which is open. We may now prove the following, crucial claim.

Claim 1. For any red points p1 and p2, there exists a red path Πr of finite length from p1 to p2.

Proof. The red region is connected, so we may choose an arbitrary red path Π from p1 to p2.
For every point q ∈ Π, consider an open ball Bq containing q for which Bq ∩ S2 ⊆ R. From the
Heine-Borel theorem, observe that Π ⊂ R3 is a compact set.

Thus, the open cover {Bq : q ∈ Π} ⊇ Π contains some finite open sub-cover {Bk : 1 6 k 6 n} ⊇ Π.
Consider the open spherical caps Ck = Bk ∩ S2. Evidently, Π belongs to the union of these caps.
Thus, there exists a path Πr of finite length from p1 to p2, comprised of arcs of these caps.

The solution continues naturally. Let p1 and p2 be two red antipodes and let Πr be a red path of
finite length connecting the two. We prove claim 2 analogously, but claim 3 requires more care.

Claim 2. Let Π′
r be the reflection of Πr about the sphere’s centre. Then, Π′

r does not intersect C.

Claim 3. Provided that Πr is adequately chosen, the path Π′
r does not intersect the path Πr.

Proof. Call a red path good if it connects two red antipodes and has finite length. Let P be the
collection of good paths Π ⊆ Πr. For any path Π, let `(Π) be its length.

Take µ = inf `(Π) as Π ∈ P . Observe that any path between two antipodes has length at least
πr, where r is the sphere’s radius, so µ > 0. Now, consider a sequence of good paths (Πn)n>1 for
which the lengths `(Πn) tend to µ as n tends to infinity.

For each path Π ∈ P let p1(Π) be the endpoint of Π which is closer to p1 and p2(Π) be the endpoint
of Π which is closer to p2. By using the Bolzano-Weierstrass theorem on the sequence p1(Πn)n>1

extract the convergent sequence p1(Πni
)i>1.

Since `(Πn) tends to µ, then so does `(Πni
). Consequently, the sequence p2(Πni

) is convergent as
well. We may the infer that the paths Πni

tend to a path of length µ which we will denote by Π∞.
Also, because Πni

are all good paths, then Π∞ is also a good path.

We claim that Π∞ and Π′
∞ do not intersect each other. Assume, for the sake of contradiction,

that some point q belongs to both of these paths. Since Π∞ and Π′
∞ are symmetrical, then they

also intersect at q′, the antipode of q.

Then, the path Π ⊂ Π∞ which connects q and q′ would also be good, and `(Π) < µ which is a
contradiction. Therefore, Π∞ and Π′

∞ do not intersect each other, so assuming we chose Πr to be
Π∞ beforehand, the claim holds.

We may now finish analogously to solution 1.


