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Problem 1. Let n ⩾ 2 be an integer. Prove that for any positive real numbers a1, a2, . . . , an,
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Solution. We prove the inequality by inducting on n. For n = 2, the base case, the inequality is
equivalent to a21 + 2a22 ⩾

√
2a1a2 which is true by the am-gm inequality. Now, assume that the

inequality is true for some integer n ⩾ 2. We will prove it also holds for n+ 1.

By applying the inequality for the n terms a2, . . . , an+1 it follows that
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Therefore, in order to prove the general inequality for n+ 1, it suffices to show that
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⩾ a1(a2 + · · ·+ an+1). (†)

One may easily observe that 2 ⩾ 20 + 2−1 + · · ·+ 2−(n−1). Inequality (†) then follows as such:
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by applying the am-gm inequality on each term.

Remark 1. More generally, with the same approach, one can prove that
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provided that x > 1 and 2y(x− 1) ⩾ 1/
√
x. In the problem above, we used x = 2 and y = 1/2

√
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Remark 2. We present another possible approach. The inequality is equivalent to
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which is true by the Cauchy-Schwarz inequality, because
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Problem 2. Let n be a positive integer. Consider an infinite checkered board. A set S of cells is
connected if one may get from any cell in S to any other cell in S by only traversing edge-adjacent
cells in S. Find the largest integer kn with the following property: in any connected set with n
cells, one can find kn disjoint dominoes.

David-Andrei Anghel and Vlad-Titus Spătaru

Solution. The answer is kn = ⌊(n + 2)/4⌋. Firstly, we show that we can always find ⌊(n + 2)/4⌋
disjoint dominoes in a connected set with n cells. To do so, we will reinterpret the problem using
a graph. Consider an arbitrary connected set S with n cells.

Construct a graph G, where each vertex represents a cell in our connected set and two vertices
are connected if and only if their corresponding cells share an edge. Naturally, finding kn disjoint
dominoes is equivalent to finding kn disjoint edges.

Because any cell is adjacent to four other cells of the board, for any vertex v ∈ G we have deg v ⩽ 4.
Consequently, it suffices to prove the following graph-theoretic claim:

Claim. In any connected graph G with n vertices and maximal degree ∆ ⩽ 4, there exist at least
kn = ⌊(n+ 2)/4⌋ disjoint edges.

Proof. We will prove this by strong induction on n. The cases n ⩽ 5 are trivially true. For n ⩾ 6,
assume that the claim holds for 1, 2, . . . , n− 1. We will show that it also holds for n.

This graph is connected, so we may consider a spanning tree T of G. Consider an arbitrary vertex
v0 as the root of T . As |T | ⩾ 6 then there exists at least one vertex v so that dist(v0, v) ⩾ 2.
Hence, let maxv∈T dist(v0, v) = d ⩾ 2.

Consider a vertex u so that dist(v0, u) = d. Let w be the parent of u and Lw be the set of leaves
emerging from w. As dist(v0, w) = d − 1 ⩾ 1, then w also has a parent. Since degw ⩽ 4 then
|Lw| ⩽ 3. Consider the edge uw and remove Lw ∪ {w} from T .

We thus form a tree T ′ with |T |−1−|Lw| ⩾ n−4 vertices. Hence, by the inductive hypothesis, in
this tree exclusively we may find ⌊(|T ′|+2)/4⌋ ⩾ ⌊(n+2)/4⌋− 1 disjoint edges. By also counting
uw, we get the desired ⌊(n+ 2)/4⌋ disjoint edges in T , finishing the proof.

Now, it suffices to provide an example for which no more than kn = ⌊(n+ 2)/4⌋ dominoes can be
selected. Evidently, it suffices to provide an example for n = 4ℓ+ 1, for which kn = ℓ, because for
n = 4ℓ+ ε with ε ∈ {0,−1,−2}, it suffices to remove some cells.

For n = 4ℓ+ 1, consider a sequence of ℓ T-tetrominoes, followed by a single cell, as seen below.



Problem 3. Let p be a prime number and A be a finite set of integers, with at least pk elements.
Denote by Neven the number of subsets of A with even cardinality and sum of elements divisible
by pk. Define Nodd similarly. Prove that Neven ≡ Nodd mod p.

Solution. Let A = {a1, . . . , an} with n ⩾ pk. We will encode each subset of A as an n-digit code
(χ1, . . . , χn) where χi = 1 if ai belongs to the subset and χi = 0 otherwise. Evidently, the sum of
elements of the subset is χ1a1 + · · ·+ χnan.

We will construct an n-variable polynomial f(x1, . . . , xn) with integer coefficients, whose degree
does not exceed pk − 1 and which satisfies

f(χ1, . . . , χn) ≡

{
1 mod p if pk | χ1a1 + · · ·+ χnan;

0 mod p otherwise
(†)

for any χ1, . . . , χn ∈ {0, 1}. To exhibit a construction, we will consider a sequence of monomials.
The term x1 is written a1 times, followed by x2 written a2 times and so on, ending with xn written
an times and the constant 1 written pk − 1 times:

(x1, . . . , x1︸ ︷︷ ︸
a1 times

, x2, . . . , x2︸ ︷︷ ︸
a2 times

, . . . , xn, . . . , xn︸ ︷︷ ︸
an times

, 1, . . . , 1︸ ︷︷ ︸
pk−1 times

),

for a total of N := a1 + · · ·+ an + pk − 1 monomials. Then, for each 1 ⩽ i ⩽ N , let gi(x1, . . . , xn)
be the i-th term of this monomial sequence. Consider every (pk − 1)-tuple of polynomials of the
form gi, take their product and sum everything in order to get

f(x1, . . . , xn) :=
∑

gi1(x1, . . . , xn) · · · gi
pk−1

(x1, . . . , xn),

for every 1 ⩽ i1 < · · · < ipk−1 ⩽ N . Evidently, this polynomial has degree d ⩽ pk − 1. Moreover,
given any χ1, . . . , χn ∈ {0, 1}, then there are precisely χ1a1 + · · ·+ χnan + pk − 1 ones among the
numbers gi(χ1, . . . , χn) so

f(χ1, . . . , χn) ≡
(
χ1a1 + · · ·+ χnan + pk − 1

pk − 1

)
mod p,

which satisfies the congruence (†) due to Lucas’ theorem. This construction is satisfactory.

Let Cu1,...,un be the coefficient of the term xu1
1 · · · xun

n in the expansion of f . For the sake of brevity,
in what follows, any instance of χi will denote a number in {0, 1}. The main observation is
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i

 .

Because deg f < pk ⩽ n then among every u1, . . . , un there exists at least one index i such that
ui = 0, hence the right-hand side is equal to zero, as desired.


