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Problem 1. Find all functions f : R → R, such that for any real numbers x, y with y ̸= 0
we have:

f(f(x) + y)f

(
1

y

)
= xf

(
1

y

)
+ 1

Marius Cerlat

Solution: Quite clearly, f(R∗) ̸= {0}, so there is some y ∈ R∗ with f
(

1
y

)
̸= 0. Substituting

this y in the hypothesis yields that f is injective.

Again, for some y ∈ R∗ such that f
(

1
y

)
̸= 0, take x = − 1

f( 1
y )
. This gives

f

y + f

− 1

f
(

1
y

)
 = 0

Therefore, there is some t with f(t) = 0. Putting x = t in the hypothesis will return

f(y)f

(
1

y

)
= tf

(
1

y

)
+ 1

and since f is injective, swapping y with 1/y will give t = 0 and f(y)f
(

1
y

)
= 1.

Claim: f(x+ y) = f(x) + f(y)

Proof: Multiplying the hypothesis by f(y) gives:

f(f(x) + y) = x+ f(y) (1)

Setting y → f(y) in (1) yields f(f(x)+f(y)) = x+f(f(y)) = f(f(x))+ y, for all nonzero x,
and y. Thus, there is a constant c such that f(f(x)) = x + c for all x ̸= 0. Setting x = −c
in this relation gives f(f(−c)) = 0 ⇒ c = 0 ⇒ f(f(x)) = x. Now, setting x → f(x) in (1)
gives the desired conclusion.

Notice that for any x ∈ R with |x| ≥ 2, there is some y ∈ R∗ s.t. x = y + 1
y
. Thus, by

AM-GM,

|f(x)| =
∣∣∣∣f (

y +
1

y

)∣∣∣∣ = ∣∣∣∣f(y) + f

(
1

y

)∣∣∣∣ ≥ 2.

Then, if |y| ≤ 1
2
(y ̸= 0), |f(y)| = 1

|f( 1
y )|

≤ 1
2
, so f is bounded on

(
−1

2
, 1
2

)
, implying that f

is linear. A quick check gives f(x) = x and f(x) = −x as the only solutions.
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Problem 2. Vadim and Marian play a game. Starting with Vadim, they take turns elimi-
nating exactly one edge from a complete graph with 2024 vertices. The first player to make
a move that leaves no cycles loses. Determine who has a winning strategy.

Pavel Ciurea

Solution: We show that Marian wins.

After Marian moves, the number of edges left uncut is even, so for him to lose the last cycle
must be an odd one.

t := 2024/4. It is well known that if the number of uncut edges is ≥ 4t, there is at least one
cycle left. So, if Marian can make the graph bipartite before there are < 4t edges left he
wins. We show that he can do so.

Marian splits the vertices in two sets, V1 and V2, with |V1| = |V2| = 2t. There are 2
(
2t
2

)
edges

uv with u, v ∈ Vi with i ∈ {1, 2} (call such an edge good), and before there are < 4t edges
left uncut, Marian cuts

((
4t
2

)
− 4t

)
/2 = 4t2 − 3t edges. Thus, it is enough for him to choose

the sets such that Vadim cuts at least 2
(
2t
2

)
− (4t2 − 3t) = t good edges and he only cuts

good ones.

At a certain point, we say a vertex u is used if there is an edge uv that has been cut.

Lemma: Marian can play so that after 2k− 1 turns there are at most 2k+1 used vertices.

Proof: We show the statement by induction. The statement trivially holds for k = 2. We
suppose the statement holds for k and show that it holds for k + 1.

Between the used vertices there are
(
2k+1
2

)
> 2k−1 edges, so Marian can cut an edge between

two already used vertices (if there are u < 2k+ 1 used vertices, then we consider 2k+ 1− u
other vertices to be used), and since at a turn a player can make at most two new vertices
used the statement is also true for k + 1 so the lemma is proven.

Therefore, after 2t − 3 turns there are at most 2t − 1 used vertices. Marian adds all these
vertices to V1, then adds random vertices until |V1| is 2t − 1 and cuts an edge between two
vertices in V1. On the next turn Vadim cuts an edge uv. If u ∈ V1 then Marian adds v in
V1 (if v ∈ V1 he adds a random vertex), and if u, v ̸∈ V1 he adds u and v to V2 and adds a
random vertex to V1.

This way, after 2t− 1 turns Vadim cut t good edges and Marian cut only good edges, so the
constructed sets satisfy the desired conditions and thus Marian wins.
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Problem 3. Prove that there exist infinitely many d such that we can find a polynomial
P of degree d with integer coefficients and N ∈ N such that for all integers x > N and any
prime p we have:

vp(P (x)3 + 3P (x)2 − 3) <
d · log(x)
20242024

where log(x) denotes the natural logarithm and vp(n) denotes the largest number k such
that pk | n.

Marius Cerlat

Solution: Let Q(x) = x3 + 3x2 − 3, and define Q(x − 1) = x3 − 3x − 1. Inspired by the
identity (

a+
1

a

)3

− 3

(
a+

1

a

)
= a3 +

1

a3
,

we find that

Q

(
x+

1

x
− 1

)
= x3 +

1

x3
− 1.

Now, define Pn(x) as the polynomial with integer coefficients that satisfies

Pn

(
x+

1

x
− 1

)
= xn +

1

xn
− 1.

Its existence and uniqueness can be easily proven by induction. We can observe that

Pn(Pm(x+
1

x
− 1)) = xmn +

1

xmn
− 1 = Pm(Pn(x+

1

x
− 1)).

Now, by substituting Pn(x) instead of P (x) in the initial condition, we find that our poly-
nomial satisfies

P3(Pn(x)) = Pn(P3(x)).

Claim: For any positive constant C, there are infinitely many natural numbers n such that
the degree of any irreducible polynomial dividing Pn(x) is at most Cn.

Subclaim 1: For any positive constant C, there are infinitely many natural numbers n such
that the degree of any irreducible polynomial dividing x2n − xn + 1 is at most Cn.

Proof: The polynomial x2n − xn + 1 divides x3n + 1, which divides

x6n − 1 =
∏
d|6n

Φd(x),

where Φd(x) is the d-th cyclotomic polynomial. It is well-known that deg(Φd) = φ(d), where
φ is Euler’s totient function. Hence, for any divisor d of 6n,

deg(Φd)

n
≤ φ(6n)

n
= 6

∏
pi|6n

(
pi − 1

pi

)
,

4



where pi are the prime factors of 6n. It is known that∏(
p− 1

p

)
converges to 0. Therefore, by taking n to be divisible by primes p1, p2, . . . , pk such that∏ pi − 1

pi
<

C

6
,

the claim is proved.

Subclaim 2: If a polynomial Q(x) is irreducible, then QR(x) = xdeg(Q)Q
(
x+ 1

x

)
has at

most two irreducible factors.

Proof: Assume QR(x) = M(x)N(x), where M(x) is an irreducible polynomial. Our goal is
to prove that N(x) must also be irreducible. We have

M(x)N(x) = xdeg(Q)Q

(
x+

1

x

)
= x2 deg(Q)M

(
1

x

)
N

(
1

x

)
.

This implies that the polynomial

M̄(x) = xdeg(M)M

(
1

x

)
is irreducible. Now, we consider two cases:

1. If M̄(x) dividesM(x), then since both polynomials have the same degree, we conclude that
M(x) is simply a scaled version of M̄(x). If M(1) is non-zero, then since M̄(1) = M(1), we

have that the polynomials are equal. If the degree of M(x) is even, M(x)

xdeg(M)/2 is a polynomial
in x + 1

x
, contradicting the hypothesis that Q(x) is irreducible. When deg(M) is odd, we

observe that M(−1) = 0, meaning that QR(−1) = 0, and thus that Q(−1− 1
1
) = 0, meaning

Q is of the form k(x+ 2), for which the hypotesis is clearly true.

If instead M(1) = 0, since M(x) divides QR(x) and QR(1) = 0, we have Q(1 + 1
1
) = 0, and

thus Q(x) = c(x− 2), which satisfies the condition.

2. If M̄(x) divides N(x), and if N(x)

M̄(x)
has degree at least 1, we observe that M(x)M

(
1
x

)
is symmetric in 1

x
, which again leads to a contradiction with the assumption that Q(x) is

irreducible. If no contradiction arises, then QR(x) must have exactly two irreducible factors,
as needed.

Finally, combining these two facts, we consider an irreducible factor F (x) of Pn(x), where n
is as described in the first subclaim. We conclude that

xdeg(F )F

(
x+

1

x

)
has degree 2 deg(F ) and at most two prime factors of degrees at most Cn, completing the
proof of the claim.
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Now, consider n such that all irreducible factors of Pn(x) have degree at most n
20242025

. We
will show that such n satisfy the condition. Indeed, take an irreducible factor F (x) of the
polynomial, and assume p | F (k) for a natural number k. By Bézout’s Lemma, for any two
coprime polynomial factors F1(x) and F2(x) of Pn (since they are irreducible and distinct),
there exist polynomials A(x) and B(x) with integer coefficients such that

F1(x)A(x) + F2(x)B(x) = c,

where c is a constant. Here, it is important to notice that Pn(x) does not have repeated
factors, as that would imply x6n − 1 also having double factors. Doing this for every pair of
irreducible divisors, we obtain the existence of a constant M (independent of p) such that
for any k,

vp(Pn) ≤ vp(F (k)) +M.

For an irreducible factor F (x), this is at most logp(F (k)) +M . Using the fact that for large

enough x, F (x) < x
n

2·20242024 , and that logp(x) ≤ log2(x), we arrive at the desired conclusion.
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