
The Golden Digits International Contest

5th Edition, October 2024

1



Problem 1. Find all functions f : Z>0 → Z>0 with the following properties:

1) For every natural number n ≥ 3, gcd (f(n), n) ̸= 1, where gcd (a, b) denotes the greatest
common divisor of a and b.

2) For every natural number n ≥ 3, there exists in ∈ N, 1 ≤ in ≤ n − 1, such that
f(n) = f(in) + f(n− in).

Ciurea Pavel

Solution: We show by complete induction on n that ∀n we can find nonnegative integers
un and vn such that f(n) = unf(1) + vnf(2), and un + 2vn = n.

The statement for n = 1 and n = 2 trivially holds. Suppose that the statement is true for 1,
2, . . . n−1. Setting un = uin +un−in , and vn = vin +vn−in we obtain f(n) = unf(1)+vnf(2)
and un + 2vn = n, so the claim in true for n as well, thus the induction is complete.

Now gcd(f(n), n) = gcd(unf(1)+vnf(2), n) = gcd(nf(1)−2vnf(1)+vnf(2), n) = gcd(vn(f(2)−
2f(1)), n). Since un + 2vn = n ⇒ vn ≤ n/2, so by letting n be a prime number we get that
gcd(f(2)− 2f(1), n) ̸= 1, so p | f(2)− 2f(1), for any prime number p, thus f(2) = 2f(1), so
f(n) = nf(1), ∀n. All such functions clearly work, so the proof is complete.
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Problem 2. Let ABC be a triangle and P a point in its interior. Circle ΓA is considered
such that it is tangent to rays (PB and (PC. Define similarly ΓB and ΓC . Prove that the
other common internal tangents of the circles are concurrent in a point.

Andrei Vila

Solution: Forget points A,B,C and relabel the intersection of the common internal tan-
gents of ΓB and ΓC by A. Define B and C similarly. Let the centers of ΓA,ΓB,ΓC be X, Y, Z.
Let {Q} = ℓB ∩ ℓC . We want to prove that QA is also tangent to ΓB and ΓC .

Suppose not and let QD be tangent to ΓB such that D ∈ PA. Thus BPCQ and QPCD
both have an exscribed circle (namely ΓB), implying that

BP +BQ = CP + CQ and CP + CQ = DP +DQ.

From this we get that
BP +BQ = DP +DQ,

implying that the quadrilateral DPBQ is exscribed. Since ΓC is already tangent to three of
the sides of this quadrilateral, so is to the fourth, implying that QD is also tangent to ΓC ,
finally giving A ≡ D, exactly what we wanted.
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Problem 3. Let a1 < a2 · · · < an be positive integers, with n ≥ 2. An invisible frog lies on
the real line, at a positive integer point. Initially, the hunter chooses a number k, and then,
once every minute, he can check if the frog currently lies in one of k points of his choosing,
after which the frog goes from its point x to one of the points x + a1, x + a2 . . . x + an.
Based on the values of a1, a2 . . . an, what is the smallest value of k such that the hunter can
guarantee to find the frog within a finite number of minutes, no matter where it initially
started?

Anghel David

We will prove the minimum such k is an−a1
gcd(a2−a1,a3−a1...an−a1)

+ 1. For this, we will first prove
3 claims:

Claim 1 : The hunter can find the frog if and only if for any positive integer M he can find
the frog with the extra knowledge that its initial position is at most M .

Proof : Clearly this only advantages the hunter, so we only need to prove that if for any M
he has a strategy SM to find it with that extra knowledge, then he can find it in the initial
problem. His strategy will be to treat the case when the initial position of the frog is < 101,
when the starting position is < 102, and so on, and the initial position will eventually be
considered in one of these cases.

When we get to the case i, let’s say we’ve made t moves, then we know that if the initial
position was at most 10i, the current position after the first i− 1 cases is at most 10i+ t ·an,
Thus we have a strategy in S10i+t·an steps and we are done.

Thus, we can suppose that we know a number M such that the initial position is at most
M .

Claim 2 : We can reduce the problem to the case a1 = 0

Proof : We consider our numbers to be 0, a2− a1 . . . an− a1. Then checking position p after
t minutes with the initial numbers is equivalent to checking position p − ta1 with the new
numbers, thus we find a bijection between the game before and the game after shifting the
ai’s, so we can just consider the case a1 = 0.

From now on, suppose that a1 = 0, and let d = gcd(a2 . . . an)

Claim 3 : The minimal value of k for a2 . . . an is the same as the minimal value of k for
a2
d
. . . an

d

Proof : We call a number k good for a2, a3, . . . an if the hunter can catch the frog by checking
k points each minute. Suppose the hunter has the additional information that the frog starts
on a point divisible by d. Since the length of each jump is divisible by d, the frog only jumps
on multiples of d. But this game is obviously equivalent to the game where the frog can
start anywhere and the ai’s are

a2
d
. . . an

d
. So if k is good for a2, a3, . . . an k is also good for

a2
d
. . . an

d
. Suppose k is good for a2

d
. . . an

d
, and that if the hunter knows the frog starts before

a number M he can catch it after tM minutes. Then if in the game where the ai’s are a2,
a3, . . . an if he knows the frog started before number d ·M and on a number ≡ r (mod d)
he can find the frog after tM minutes. Then if he doesn’t catch the frog after tM minutes,
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he knows the frog did not start on a number ≡ r (mod d), and he can inductively eliminate
residues until he catches the frog. Then, by claim 1, k is also good for a2, a3, . . . an.

Finally, we are left with proving that if the ai are coprime nonnegative integers with 0
appearing in the sequence, and the biggest ai is x, then the minimal k is x+ 1.

It’s trivial to see that x+ 1 is enough: if we know the position of the frog is at most N , the
hunter chooses N − x . . . N , and if he doesn’t find it he knows the frog’s position is at most
N − x− 1, and thus the new position is at most N − 1, and we can repeat this process until
we get that it’s position less than 0, contradiction.

Now we prove we need at least x. Suppose k = x works. We prove that if the number of
positions the frog can be in is at least x3 + 1, then after each move this number doesn’t
decrease (we consider the possibilities left after the hunter eliminates x of them).

Let f(i) be the number of possibilities that are equal to i modulo x. Then as 0 appears in
our sequence, all of these remain as possibilities. If each f(i) is non-zero we are done, as in
each residue class mod x we still have the same possibilities and we also get the biggest one
+x, as x is in our sequence, so we are done.

Thus, one f(i) needs to be 0. Consider a graph with vertices 1, 2 . . . x, and a directed edge
from a to b if the residue of b− a in mod x appears in the sequence ai. Then, if for an edge
a =⇒ b we have f(a) ≥ f(b) + x, we are done, as we can let b− a ≡ aj(modx).

Thus when can add aj to each possibility with residue class a and we get f(a) residues in
class b, out of each at most f(b) were already there, thus we get at least x new residues. So,
for each edge, we have f(a) < f(b)+x. But now, as the ai are coprime, the graph is strongly
connected.

Let v be a residue class with f(v) = 0 and u a random residue class. Thus we have a directed
path from u to v, but then the minimal path clearly has length at most x, and, at each step,
the f of the residues class must decrease by less than x, thus we get that f(u) is less than
x2, but when summing over all residue classes we get the number of possibilities is at most
x2 · x, contradiction.
So, if we initially have x3 + 1 possibilities, we will always have at least x3 + 1 − x > 0
possibilities, which concludes the proof.
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