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Problem 1. Alex and Bob play a game: Bob picks an initial positive integer x0. Then,
after every minute, Alex chooses a positive integer a, and Bob chooses xi+1 to be equal to
xi + a or xi + 2a. Prove that no matter the choice of x0 and Bob’s strategy, Alex can force
him to choose a number that is a perfect square after a finite number of minutes.

David Anghel

Solution: Let k ∈ N such that x0 < 2k2 − 1. Then by choosing a = 1 at every turn Alex
can guarantee that there exists an index i such that xi = 2k2 − 1 or xi = 2k2.

If xi = 2k2 − 1 then Alex chooses a = 7k2 +12k+5, and xi+1 is either (3k+2)2 or (4k+3)2

so Alex wins.

If xi = 2k2 then Alex chooses a = 7k2, and then xi+1 is either (3k)
2 or (4k)2 so Alex wins in

this case as well, so our proof ends.
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Problem 2. Let n, m be two integers such that 2 | mn. On an n × m board we place
n ·m/2 dominoes without overlap. On some domino e lies a burito. Alex sits on the top-left
corner of a domino s and is very hungry. He is allowed to make two types of moves:

a) from the vertex of a domino he can move diagonally to the opposite one

b) if he sits on the corner of some domino d he can move to the top-left corner of d

Alex can eat the burito if he reaches a corner of e. Can Alex satisfy his belly regardless of
the choice of m, n, s, and e?

Pavel Ciurea

Solution: We prove the answer is yes.

Let G = (V,E) be a directed graph in which each vertex encodes a domino. We draw an
edge u → v if their corresponding dominoes share at least a vertex and one of them is either
the top-left or the bottom-right vertex of u. We show that G is strongly connected (i.e.
there is a directed path from u to v, for any u, v ∈ V ).

Suppose for the sake of contradiction that G is not strongly connected, Then G can be split
into strongly connected components C1, C2, . . . Ck where k is minimal. We create a new
directed graph G0 = (E0, V0) in which each vertex vi corresponds to a component Ci, and

we draw an edge vi → vj if there exists u ∈ Ci and v ∈ Cj such that
→
uv ∈ E.

Claim: There exists i such that deg+vi = 0.

Proof: We show that if deg+vi ≥ 1 for all i = 1, k then we can find a directed cycle in G0.

We create a list v1 = vi1 , vi2 , vi3 , . . . such that
→

vitvit+1 ∈ E0. Since we have a finite number
of edges at some point we will find a vertex that repeats in the list, say vit = vit+δ

. Then
vit . . . vit+δ−1

is a directed cycle in G0.

But then the union of the connected components corresponding to the vertices in the cycle
is a strongly connected component, contradiction with the choice of k.

Without loss of generality v1 has outdegree 0.

Call a cell neighbour of a vertex v (vertex of a domino) if one of its vertices is v. We say a
cell has colour i if it is covered by a domino in Ci.

Claim: Let d be a domino in C1. Then the neighbouring cells of d’s top-left and bottom-
right corners have colour 1.

Proof: Suppose the claim is false. We treat the case where the the top-left corner (tl) of d
has a neighbour of a different colour, as the other case is analogous. Call the domino which
covers a neighbouring cell of tl and doesn’t have colour 1 d2.

tl cannot be a vertex of d2 as otherwise
→

v1v2 ∈ E0. Then d2 must cover two neighbouring
cells of tl. Call the one not covered by either d2 or d B. Suppose that B is the top-right

3



neighbour of tl. Call such cells “bad”. Without loss of generality B is one of the “bad” cells
with maximal y-coordinate (i.e. B is the highest “bad” cell).

B has colour 1 because the domino covering it (d’) has tl as a vertex. If this domino is

horizontal its top-left corner is a corner of d2, contradiction (
→
v1vi ∈ E where i is the colour

of d2). If it is vertical domino, then the bottom-left corner of its top-left corner cannot have

colour 1, because it would imply
→
v1vi ∈ E. Then the domino covering it cannot be horizontal

because it would have the top-left corner of d’ as a vertex, so it must be vertical. Then the
top-right neighbour of the top-left corner of d’ is a “bad” vertex, contradiction with the
choice of B.

The case where B is the bottom-left neighbour of tl is analogous.

Since G is not strongly connected, the dominoes corresponding to the vertices in C1 cannot
cover the entire board, so there must be a domino d′ which shares at least one point on its
border with a domino d corresponding to a vertex in C1.

Suppose d is horizontal. If d′ covers the top-left neighbour of the top-right vertex of d then
the bottom-left corner of d′ is the bottom-right corner of the domino covering the top-right
neighbour of the top-left vertex of d. But this domino corresponds to C1 from the claim,
contradiction.

This proves that the top-left neighbour of the top-right vertex of d has colour 1, so the
top-right corner of d is the bottom-right corner of another domino corresponding to a vertex
in C1. So, from the claim, d′ cannot cover the top-right neighbour of the top-right corner of
d.

So we are left to check the cases when d′ covers the bottom-right or the bottom-left neighbours
of the bottom-left corner of d, which are analogous to the previous case.

The case where d is placed vertically is treated in the same way.

So, the dominoes corresponding to C1 must cover the entire board, soG is strongly connected,
ending our proof.
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Problem 3. Let P and Q be convex polygons with areas SP and SQ, respectively, such that
every vertex of Q lies inside or on the boundary of P . Prove that there exists a polygon R,
similar to P and with sides parallel to the sides of P , with area SR, such that every vertex
of R lies inside or on the boundary of Q, and

SR ≥ 1

1000
·
S2
Q

SP

Anghel David

Solution: We will prove the following key lemma.

Lemma 1. If T is a convex polygon with area ST , then there exists a triangle ∆ with area
S∆ and vertices inside or on the boundary of T such that S∆ ≥ 1

4
ST .

Proof: Let us consider△ABC with vertices being vertices of T and maximal area. Construct
lines ℓA, ℓB, ℓC through the respective vertices, parallel to the lines BC, CA, and AB. Let
ℓA ∩ ℓB = C1, ℓB ∩ ℓC = A1, and ℓC ∩ ℓA = B1. If we assume that there exists a point
X of T outside △A1B1C1, we easily reach a contradiction with the maximality of △ABC.
Therefore, T lies entirely within △A1B1C1, from which it follows that S∆ ≥ 1

4
ST .

A

C

B

B1 A1

C1

X

From the lemma, it follows that there exists a triangle ∆Q ⊂ Q with area S∆Q ≥ 1
4
SQ.

Additionally, considering the triangle ABC in P with the largest area, the triangle A1B1C1,
defined as in the lemma, contains P entirely and has area S△ABC ≤ 4SP . For brevity, let us
denote ∆P = △A1B1C1. Now we will prove a lemma that completes the problem.

Lemma 2. There exists a triangle ∆R, similar to ∆P , whose vertices lie inside or on the
boundary of ∆Q, with area

S∆R ≥
S2
∆Q

S∆P

.

Proof: Note that ∆Q ⊂ Q ⊂ P ⊂ ∆P , meaning ∆Q is entirely contained within ∆P , which
implies S∆Q < S∆P . If one of the sides of ∆P does not contain a vertex of ∆Q, we can fix
the other two sides and translate the third side parallelly toward ∆Q until a vertex of ∆Q
lies on the third side.
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In this way, we obtain a triangle ∆′
P ∼ ∆P with an area smaller than that of ∆P . Therefore,

if we prove the lemma with ∆P replaced by ∆′
P , the inequality for ∆P will follow trivially.

Thus, we can assume that every side of ∆P contains a vertex of ∆Q. Now, we consider
several different cases regarding the placement of these vertices on the sides of ∆P .

Case 1: ∆P and ∆Q have no common vertices.

In this case, each side of ∆P must contain a vertex of ∆Q in its interior. Let ∆P = △P1P2P3

and ∆Q = △Q1Q2Q3, with Qi ∈ Pi+1Pi+2, where the indices are taken modulo 3. Let S be
a point in the interior of ∆Q such that

S△Q1SQ2 : S△Q2SQ3 : S△Q3SQ1 = S△Q1P3Q2 : S△Q2P1Q3 : S△Q3P2Q1 .

Such a point exists because we can choose S so that

dist(S,Q1Q2) : dist(S,Q2Q3) : dist(S,Q3Q1) =
S△Q1P3Q2

Q1Q2

:
S△Q2P1Q3

Q2Q3

:
S△Q3P2Q1

Q3Q1

.

P2P1

P3

Q1Q2

Q3

R3

R2

S

R1

Now let Ri = SPi ∩Qi+1Qi+2. We can observe that

SR3

R3P3

:
SR1

R1P1

:
SR2

R2P2

=
S△Q1SQ2

S△Q1P3Q2

:
S△Q2SQ3

S△Q2P1Q3

:
S△Q3SQ1

SQ3P2Q1

= 1 : 1 : 1,
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from which it follows that △R1R2R3 ∼ ∆P since RiRi+1 ∥ PiPi+1. Let ∆R = △R1R2R3. It
remains to observe that if we denote λ = RiPi

SRi
, then we have:

S∆Q

S∆R

= 1 +
S△R1Q2R3 + S△R3Q1R2 + S△R2Q3R1

S△R1SR3 + S△R3SR2 + S△R2SR1

= 1 +
λS△R1SR3 + λS△R3SR2 + λS△R2SR1

S△R1SR3 + S△R3SR2 + S△R2SR1

= 1 + λ.

From the homothety, however, S∆P
= (1+λ)2S∆R

, hence S∆R
=

S2
∆Q

S∆P

, completing the proof.

Case 2: One of the vertices of ∆P coincides with one of the vertices of ∆Q.

Let the triangles be △P1P2P3 and △Q1Q2Q3, similar to the previous case, with P3 ≡ Q3.
Let Q1 lie on side P1P2, and let Q2 lie in the interior or on the perimeter of △Q3Q1P2. We
will construct the triangle ∆R explicitly:

• Construct a line ℓ through Q2, parallel to P1P2, and define X = Q1Q3 ∩ ℓ.

• Construct a point Y such that XY ∥ P1P3 and Y Q2 ∥ P2P3. It is not difficult to
observe that Y does not lie outside ∆Q.

• Consider the triangle ∆R = △XYQ2 ⊂ ∆Q. Since ∆R ∼ △P1P2P3 and the two
triangles have pairwise parallel sides, the lines UP1, P2Q2, and V P3 intersect at a
single point. Let this intersection point be Z.

P3 ≡ Q3

P1 P2Q1

Q2

Y

ZX

It is easy to observe that if k = ZX
ZP1

= ZQ2

ZP2
= ZY

ZP3
, then:

S△XY Z : S△XZP3 : S△ZP3P1 = S△XZQ2 : S△XZQ2Q1 : S△ZP1P2

= S△Y ZQ2 : S△ZQ2P3 : S△ZP2P3 ,
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because all three ratios are 1 : k : k2. Summing up the areas, we obtain:

S∆R : S∆Q : S∆P = 1 : k : k2,

from which S∆R =
S2
∆Q

S∆P
. This concludes Case 2, and Lemma 2 is proved.

From Lemma 2, it follows that there exists a triangle ∆R ∼ ∆P such that ∆R ⊂ ∆Q and its
area satisfies

S∆R ≥
S2
∆Q

S∆P

≥
(
1
4
SQ

)2
4SP

=
1

64
·
S2
Q

SP
.

Let P ′ be the image of P under the homothety mapping ∆P to ∆R. We can observe that
P ′ ⊂ ∆R ⊂ ∆Q ⊂ Q, which implies that P ′ lies entirely within Q. Moreover, P ′ ∼ P due
to the homothety, and furthermore,

SP ′ =
SP

S∆P

· S∆R ≥ SP

S∆P

·
(

1

64
·
S2
Q

SP

)
=

1

64
·
S2
Q

S∆P

≥ 1

256
·
S2
Q

SP
.

The polygon P ′ satisfies the desired conditions forR, completing the solution to the problem.
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