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Problem 1. Alex and Bob play a game: Bob picks an initial positive integer xo. Then,
after every minute, Alex chooses a positive integer a, and Bob chooses z;1 to be equal to
x; + a or x; + 2a. Prove that no matter the choice of xq and Bob’s strategy, Alex can force
him to choose a number that is a perfect square after a finite number of minutes.

DAVID ANGHEL

Solution: Let & € N such that 2y < 2k*> — 1. Then by choosing a = 1 at every turn Alex
can guarantee that there exists an index 7 such that x; = 2k? — 1 or x; = 2k

If x; = 2k* — 1 then Alex chooses a = Tk* 4+ 12k + 5, and ;4 is either (3k +2)? or (4k + 3)?
so Alex wins.

If x; = 2k? then Alex chooses a = Tk?  and then x;,; is either (3k)? or (4k)? so Alex wins in
this case as well, so our proof ends.



Problem 2. Let n, m be two integers such that 2 | mn. On an n x m board we place
n-m/2 dominoes without overlap. On some domino e lies a burito. Alex sits on the top-left
corner of a domino s and is very hungry. He is allowed to make two types of moves:

a) from the vertex of a domino he can move diagonally to the opposite one
b) if he sits on the corner of some domino d he can move to the top-left corner of d

Alex can eat the burito if he reaches a corner of e. Can Alex satisfy his belly regardless of
the choice of m, n, s, and e?

PAvEL CIUREA

Solution: We prove the answer is yes.

Let G = (V, E) be a directed graph in which each vertex encodes a domino. We draw an
edge u — v if their corresponding dominoes share at least a vertex and one of them is either
the top-left or the bottom-right vertex of u. We show that G is strongly connected (i.e.
there is a directed path from u to v, for any u, v € V).

Suppose for the sake of contradiction that G is not strongly connected, Then G can be split
into strongly connected components C, Cy, ...C) where k is minimal. We create a new
directed graph Gy = (Ey, V) in which each vertex v; corresponds to a component C;, and
we draw an edge v; — v; if there exists v € C; and v € C; such that uv € E.

Claim: There exists ¢ such that deg,v; = 0.

Proof: We show that if deg,v; > 1 for all i = 1, k then we can find a directed cycle in Gy.

We create a list v; = v;,, Vi, U4y, ... such that Uiﬂ?im € Ey. Since we have a finite number
of edges at some point we will find a vertex that repeats in the list, say v;, = v;,, ;. Then

Vi, ... Vi, s, s a directed cycle in Gy.

But then the union of the connected components corresponding to the vertices in the cycle
is a strongly connected component, contradiction with the choice of k.

Without loss of generality v; has outdegree 0.

Call a cell neighbour of a vertex v (vertex of a domino) if one of its vertices is v. We say a
cell has colour i if it is covered by a domino in C;.

Claim: Let d be a domino in C;. Then the neighbouring cells of d’s top-left and bottom-
right corners have colour 1.

Proof: Suppose the claim is false. We treat the case where the the top-left corner (t1) of d
has a neighbour of a different colour, as the other case is analogous. Call the domino which
covers a neighbouring cell of tl and doesn’t have colour 1 ds.

tl cannot be a vertex of d, as otherwise Ul_{)g € Fy. Then dy must cover two neighbouring
cells of tl. Call the one not covered by either dy or d B. Suppose that B is the top-right



neighbour of tl. Call such cells “bad”. Without loss of generality B is one of the “bad” cells
with maximal y-coordinate (i.e. B is the highest “bad” cell).

B has colour 1 because the domino covering it (d’) has tl as a vertex. If this domino is
horizontal its top-left corner is a corner of dy, contradiction (vﬁjl € FE where 7 is the colour
of dy). If it is vertical domino, then the bottom-left corner of its top-left corner cannot have
colour 1, because it would imply "U?Ui € E. Then the domino covering it cannot be horizontal
because it would have the top-left corner of d’ as a vertex, so it must be vertical. Then the
top-right neighbour of the top-left corner of d’ is a “bad” vertex, contradiction with the
choice of B.

The case where B is the bottom-left neighbour of tl is analogous.

Since G is not strongly connected, the dominoes corresponding to the vertices in C; cannot
cover the entire board, so there must be a domino d’ which shares at least one point on its
border with a domino d corresponding to a vertex in Cf.

Suppose d is horizontal. If d’ covers the top-left neighbour of the top-right vertex of d then
the bottom-left corner of d’ is the bottom-right corner of the domino covering the top-right
neighbour of the top-left vertex of d. But this domino corresponds to C; from the claim,
contradiction.

This proves that the top-left neighbour of the top-right vertex of d has colour 1, so the
top-right corner of d is the bottom-right corner of another domino corresponding to a vertex
in C}. So, from the claim, d’ cannot cover the top-right neighbour of the top-right corner of
d.

So we are left to check the cases when d’ covers the bottom-right or the bottom-left neighbours
of the bottom-left corner of d, which are analogous to the previous case.

The case where d is placed vertically is treated in the same way.

So, the dominoes corresponding to C; must cover the entire board, so G is strongly connected,
ending our proof.



Problem 3. Let P and Q be convex polygons with areas Sp and Sg, respectively, such that
every vertex of Q lies inside or on the boundary of P. Prove that there exists a polygon R,
similar to P and with sides parallel to the sides of P, with area Sg, such that every vertex
of R lies inside or on the boundary of Q, and
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ANGHEL DAVID

Solution: We will prove the following key lemma.

Lemma 1. If 7 is a convex polygon with area S7, then there exists a triangle A with area
Sa and vertices inside or on the boundary of T such that S > }157.

Proof: Let us consider AABC with vertices being vertices of 7 and maximal area. Construct
lines 4, g, {c through the respective vertices, parallel to the lines BC', C A, and AB. Let
lyNitg = Ci, bgNlc = Ay, and fc N4y = Bp. If we assume that there exists a point
X of T outside AA;B,C}, we easily reach a contradiction with the maximality of AABC.
Therefore, T lies entirely within AA; B;C, from which it follows that Sa > iST-

From the lemma, it follows that there exists a triangle Ag C Q with area Sa, > ;ILSQ.
Additionally, considering the triangle ABC' in P with the largest area, the triangle A;B;CY,
defined as in the lemma, contains P entirely and has area Saapc < 4Sp. For brevity, let us
denote Ap = AA;B1C;. Now we will prove a lemma that completes the problem.

Lemma 2. There exists a triangle Ag, similar to Ap, whose vertices lie inside or on the

boundary of Ag, with area
Aq

Sap’

Sap >

Proof: Note that Ag C Q C P C Ap, meaning Ag is entirely contained within Ap, which
implies Sa, < Sa,. If one of the sides of Ap does not contain a vertex of Ag, we can fix
the other two sides and translate the third side parallelly toward Ag until a vertex of Ag
lies on the third side.



In this way, we obtain a triangle A%, ~ Ap with an area smaller than that of Ap. Therefore,
if we prove the lemma with Ap replaced by A%, the inequality for Ap will follow trivially.
Thus, we can assume that every side of Ap contains a vertex of Ag. Now, we consider
several different cases regarding the placement of these vertices on the sides of Ap.

Case 1: Ap and Ag have no common vertices.

In this case, each side of Ap must contain a vertex of Ag in its interior. Let Ap = AP, P, Ps
and Ag = AQ1Q2Q3, with Q; € P11 P, o, where the indices are taken modulo 3. Let S be
a point in the interior of Ag such that

SAQ15Qs  SnQ25Qs + SAQsSQr = SAQIPsQy P SAQaPIQs | SAQsPyQ: -

Such a point exists because we can choose S so that

. . . S 1432 S 24713 S 312L01
dist(S, @1Q2) : dist(S, Q2Qs3) : dist(S, Q3Q1) = ngQPQQ : AQQQQP?’Q : AQiQPIQ .

Py

Now let R; = SP, N Q;11Q;12. We can observe that

SRs ) SR, ) SRs _ SAleQQ ) SAQgSQg .SAQ3SQ1 -
R3P3 . R P . Ry Py SAQ1P3Q2 . SAQ2P1Q3 . SQ3P2Q1




from which it follows that ARy RoR3 ~ Ap since R;R;1 1 || P;Pi+1. Let Ag = AR RoR3. It

remains to observe that if we denote \ = gﬁi, then we have:
1

SAQ — 14 SAR1Q2R3 + SARsQle + SARQQsRl
Sar SARySRs + SARsSRy + SARSR,
14 ASAR SRy + ASARsSR, + ASAR, SR
SAR1SRs + SARsSRy + SAR.SR,
=1+
SA .
From the homothety, however, Sx, = (1+ \)?Sa,, hence Sa, = ﬁ, completing the proof.

Case 2: One of the vertices of Ap coincides with one of the vertices of Ag.

Let the triangles be AP, PPy and AQ1Q2Q3, similar to the previous case, with P3 = Q3.
Let @1 lie on side P, P, and let ()5 lie in the interior or on the perimeter of AQ3Q1P,. We
will construct the triangle Az explicitly:

e Construct a line ¢ through @), parallel to P, P, and define X = Q1Q3 N /.

e Construct a point Y such that XY || PiP; and Y@y || P2Ps;. It is not difficult to
observe that Y does not lie outside Ag.

e Consider the triangle Ag = AXY Qs C Ag. Since Agx ~ AP P,P; and the two
triangles have pairwise parallel sides, the lines UP;, P»()2, and V Pj intersect at a
single point. Let this intersection point be Z.

P; = Qs

It is easy to observe that if k = 5—1)51 = g%j = ZZ—;,;, then:

Saxyz: SAXZPg : SAZP3P1 = SAXZQQ : SAXZQng . SAZPng

= SAYZQs 1 SAZQsPs  SAZP Py



because all three ratios are 1 : k : k. Summing up the areas, we obtain:

SAR:SAQ:SApzlzk:kQ,

2

s
from which Sa, = Sig. This concludes Case 2, and Lemma 2 is proved.
P

From Lemma 2, it follows that there exists a triangle Ag ~ Ap such that Ax C Ag and its
area satisfies
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Sap, — 45p 64 Sp
Let P’ be the image of P under the homothety mapping Ap to Az. We can observe that
P C Ar C Ag C Q, which implies that P’ lies entirely within Q. Moreover, P’ ~ P due
to the homothety, and furthermore,

o> 2 (1R) L R LS

Sar >

Spr =

T 64 Sa, T 256 Sp

64 Sp

The polygon P’ satisfies the desired conditions for R, completing the solution to the problem.



