

Problem 1. Find all functions $f : \mathbb{Z}_{>}0 \to \mathbb{Z}_{>}0$ with the following properties:

1) For every natural number $n \ge 3$, $gcd(f(n), n) \ne 1$, where gcd(a, b) denotes the greatest common divisor of a and b.

2) For every natural number $n \ge 3$, there exists $i_n \in \mathbb{N}$, $1 \le i_n \le n-1$, such that $f(n) = f(i_n) + f(n-i_n)$.

Problem 2. Let ABC be a triangle and P a point in its interior. Circle Γ_A is considered such that it is tangent to rays (PB and (PC. Define similarly Γ_B and Γ_C . Let $\ell_A \neq PA$ be the other internal tangent of Γ_B and Γ_C . Prove that ℓ_A , ℓ_B and ℓ_C meet at a point.

Problem 3. Let $a_1 < a_2 \cdots < a_n$ be positive integers, with $n \ge 2$. An invisible frog lies on the real line, at a positive integer point. Initially, a hunter chooses a number k, and then, once every minute, he can check if the frog currently lies in one of k points of his choosing, after which the frog goes from its point x to one of the points $x + a_1, x + a_2 \dots x + a_n$. Based on the values of $a_1, a_2 \dots a_n$, what is the smallest value of k such that the hunter can guarantee to find the frog within a finite number of minutes, no matter where it initially started?